Addition Patterns in Carbon Allotropes: Independence Numbers and d-Codes in the Klein and Related Graphs

نویسندگان

  • Luca Bellarosa
  • Patrick W. Fowler
  • Erwin Lijnen
  • Michel Deza
چکیده

The problem of predicting stoichiometries and patterns of chemical addition to a carbon framework, subject solely to the restriction that each addend excludes neighboring sites up to some distance d, is equivalent to determination of d-codes of a graph, and for d = 2 to determination of maximum independent sets. Sizes, symmetries, and numbers of d-codes are found for the all-heptagon Klein graph (prototype for "plumber's nightmare" carbon) and for three related graphs. The independence number of the Klein graph is 23, which increases to 24 for a related, but sterically relaxed, all-heptagon network with the same number of vertices and modified adjacencies. Expansion of the Klein graph and its relaxed analogue by insertion of hexagonal faces to form leapfrog graphs also allows all heptagons to achieve their maximum of 3 addends. Consideration of the pi system that is the complement of the addition pattern imposes a closed-shell requirement on the adjacency spectrum, which typically reduces the size of acceptable independent sets. The closed-shell independence numbers of the Klein graph and its relaxed analogue are 18 and 20, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

On the Graphs Related to Green Relations of Finite Semigroups

In this paper we develop an analog of the notion of the con- jugacy graph of  nite groups for the  nite semigroups by considering the Green relations of a  nite semigroup. More precisely, by de ning the new graphs $Gamma_{L}(S)$, $Gamma_{H}(S)$, $Gamma_{J}(S)$ and $Gamma_{D}(S)$ (we name them the Green graphs) related to the Green relations L R J H and D of a  nite semigroup S , we  first atte...

متن کامل

The Molecular Mechanics Model of Carbon Allotropes

Carbon can form numerous allotropes because of its valency. Graphene, carbon nanotubes,capped carbon nanotubes, buckyballs, and nanocones are well-known polymorphs of carbon.Remarkable mechanical properties of these carbon atoms have made them the subject of intenseresearch. Several studies have been conducted on carbon nanotubes or graphene. In the presentstudy, the molecular mechanics method ...

متن کامل

Use of Structure Codes (Counts) for Computing Topological Indices of Carbon Nanotubes: Sadhana (Sd) Index of Phenylenes and its Hexagonal Squeezes

Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...

متن کامل

Creation of graphene allotropes using patterned defects

Monolithic structures can be built into graphene by the addition and subsequent re-arrangement of carbon atoms. To this end, ad-dimers of carbon are a particularly attractive building block because a number of emerging technologies offer the promise of precisely placing them on carbon surfaces. In concert with the more common Stone-Thrower-Wales defect, repeating patterns can be introduced to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and computer sciences

دوره 44 4  شماره 

صفحات  -

تاریخ انتشار 2004